

 Navigation

 	
 index

 	
 next |

 	Dingos 0.2.1 documentation

Welcome to Django-Dingos’s documentation!

Contents:

	What DINGOS is all about

	What DINGOS is still missing

	Installation

	Usage

	Contributing
	The issue tracker for Django DINGOS

	Types of Contributions
	Report Bugs

	Fix Bugs

	Implement Features

	Write Documentation

	Submit Feedback

	Get Started!
	Modifying/adding to existing code

	Writing your own Django application

	Pull Request Guidelines

	Credits
	Development Lead

	Contributors

	History
	0.2.1 (2014-03-06)

	0.2.0 (2014-02-24)

	0.1.0 (2013-12-19)

	0.0.9 (2013-12-16)

	Developers’ Guide to DINGOS
	Before starting to develop
	Read up on techniques and styles used in DINGOS

	Make sure that DINGOS is the right place to modify / add to

	DINGOS Model Overview

	DINGOS Application Layout
	Overview of the directory layout

	core: internal DINGOS libraries

	management/commands

	templates\dingos\grappelli

	templatetags\dingos_tags.py

	admin.py

	filter.py

	import_handling.py

	importer.py

	models.py

	__init__.py

	read_settings.py

	urls.py

	view_classes.py

	views.py

	Writing views and templates for Dingos
	Relevant folders and files
	Templates

	Views

	Supporting Documentation

	Dingos-specific features
	User configurations

	Tips and tricks

	Dingos User Configuration Facilities
	Defining user configurations

	Accessing user configurations in templates

	Accessing user configuration in views

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

What DINGOS is all about

Dingos (“Django: INformation in Generic ObjectS”) is a Django
application that allows you to manage data structured in hierarchies
in a generic way. It was written for dealing with cyber-threat
information expressed in standards such as CybOX and STIX as part of
the MANTIS Cyber Threat Information Management Framework, but may also
have other applications.

Consider the following XML-based example:

<person>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <age>25</age>
 <address>
 <streetAddress>21 2nd Street</streetAddress>
 <city>New York</city>
 <state>NY</state>
 <postalCode>10021</postalCode>
 </address>
 <phoneNumbers>
 <phoneNumber type="home">212 555-1234</phoneNumber>
 <phoneNumber type="fax">646 555-4567</phoneNumber>
 </phoneNumbers>
</person>

The generic XML import of Dingos stores this information by
extracting the following “facts”:

	Fact Term
	Fact Value

	person/firstName
	John

	person/lastName
	Smith

	person/age
	25

	person/address/streetAddress
	21 2nd Street

	person/address/city
	New York

	person/address/state
	NY

	person/address/postalCode
	10021

	person/phoneNumbers/phoneNumber@type
	home

	person/phoneNumbers/phoneNumber
	212 555-1234

	person/phoneNumbers/phoneNumber@type
	fax

	person/phoneNumbers/phoneNumber
	646 555-4567

This list of facts is stored as a Dingo “InfoObject”.
The data model also keeps track of positional information
that associates the attribute ‘home’ with the first and attribute
‘fax’ with the second telephone number.

Viewing the imported file (without any further customization) currently looks like follows:

[image: _images/dingos_example_view.png]
Dingos further offers:

	a configurable parser that enables Dingos
to deal with rather complicated data structures such as STIX
and CybOX that require extraction of embedded structures,
derivation of object identifiers, etc.

	a high degree of sharing in the data model: if a piece
of data occurs several times (e.g., in several imports), then
it is only stored once and referenced at all occurrences.

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

What DINGOS is still missing

At the current revision: LOT’S. Currently, Dingos support import and viewing/search of the imported data,
but of course it also requires facilities for editing, authorization management etc., etc., etc.

If there are features you particularly miss and feel like contributing, please have a look at
Contributing and Developers’ Guide to DINGOS.

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

Installation

	Make sure that you have the required
dependencies on OS level for building the XML-related packages. For
example, on an Ubuntu system, execute the following commands:

apt-get install libxml2 libxml2-dev
apt-get install python-dev libxslt1-dev

	Find out the current version of libxml2-python by browsing to
https://pypi.python.org/pypi/libxml2-python and noting done the
version number (at time of writing, this was 2.6.21).

	Install django-dingos using pip:

$ pip install ftp://xmlsoft.org/libxml2/python/libxml2-python-<libxml2-python-version-nr>.tar.gz
$ pip install django-dingos

	Add dingos and grappelli to your INSTALLED_APPS list in your settings.

	To get started, add the dingos urls to your url.py like so:

urlpatterns = patterns('',
 ...

 url(r'^dingos/', include('dingos.urls')),

 ...)

	Dingos uses the grappelli application (see django-grappelli [https://github.com/sehmaschine/django-grappelli]). This requires you to
run the collect static command once after installing grappelli:

python manage.py collectstatic

	If you are using south [http://south.readthedocs.org/en/latest/] (and you should be using south), carry out the schemamigration
for dingos:

python manage.py migrate dingos

Otherwise (this is not recommended, because migrating to future releases of DINGOS will be a pain),
run:

python manage.py syncdb

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

Usage

To use Dingos, include grappelli and dingos in Django’s INSTALLED_APPS. Make sure that
you carry out the collect static command required for grappelli!

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

Contributing

Contents

	Contributing
	The issue tracker for Django DINGOS

	Types of Contributions
	Report Bugs

	Fix Bugs

	Implement Features

	Write Documentation

	Submit Feedback

	Get Started!
	Modifying/adding to existing code

	Writing your own Django application

	Pull Request Guidelines

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways.

The issue tracker for Django DINGOS

Although django-dingos is generic, in the near future its further development
will occur mostly within the further development of the
Django Mantis Cyber-Threat Intelligence Management Framework [https://github.com/siemens/django-mantis]. So,
for the time being, please use
https://github.com/siemens/django-mantis/issues
as issue tracker for bugs, feature requests and other feedback regarding
django-dingos.

Types of Contributions

Report Bugs

Report bugs at https://github.com/siemens/django-mantis/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues (https://github.com/siemens/django-mantis/issues) for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues (https://github.com/siemens/django-mantis/issues) for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Djangos could always use more documentation, whether as part of the
official Djangos docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/siemens/django-mantis/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

In your contribution, you may want to either modify/add to existing code
or create a new Django application that interacts with the existing
applications that are part of the Mantis framework.

DINGOS profitted a lot from the advice provided in Two Scoops of Django [https://django.2scoops.org/].
Unless you are an absolute Django expert (and maybe even then), please
read Daniel Greenfield’s and Audrey Roy’s excellent Two Scoops of Django [https://django.2scoops.org/].
Even though it provides best practices for Django 1.5, most of its
advice is also valid for Django 1.6, and likely to be very relevant
for quite a few minor revisions to come.

Modifying/adding to existing code

Here’s how to set up a repository for local development.

	Fork the relevant repository repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/<repository>.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv <your_mantis_environment>
$ cd <repository_folder>
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Writing your own Django application

Do yourself a favor and set up the directory structure of your
Django application in the right way from the very start.
The easiest way to do so is to use Daniel Greenfield’s cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage] template
(which uses Audrey Roy’s excellent Cookiecutter [https://github.com/audreyr/cookiecutter] for creating the directories): this
layout has a very sensible directory structure with out-of-the-box configuration of setup.py for
easy build, submission to PyPi, etc., as well as the start of a Sphinx documentation tree.
Once you have the directory structure created, initialize a fresh git repository with it
and get to work...

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7.

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

Credits

Development Lead

	Siemens <mantis.cert@siemens.com>

Contributors

None yet. Why not be the first?

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

History

0.2.1 (2014-03-06)

	Bugfixes

	CRITICAL Remediation of painfully slow import for systems with lot’s of imported data

An illformed query led to extremely slow import of new data in systems
that already have lot’s of data inside. This bug has been fixed.

	Problem in link to InfoObjects in which a certain fact can be found on Unique Search Page fixed

The link was faulty in that it carried a ‘&page=...’ parameter that needed to be removed.

	Long repetition of ‘_’ in a string lead to HTML display spilling over, because ‘_’ was
not regarded as place to insert a possible line break. This has been changed.

	New/Modified views

	View for listing all InfoObjects, also those used internally by DINGOS
for bookkeeping (e.g., user preferences). The view is restricted to
Django-superusers.

	New/Modified command-line commands

	In ‘dingos_manage_user_settings’, added the ability to overwrite settings for ‘ALL’
users.

0.2.0 (2014-02-24)

	New base functionality

	Added framework for managing user-specific data (user configurations,
saved searches, etc.) and querying user-specific data in templates and views.

	Added tracking of namespace information per component of a fact term

	New/Modified views

	Modifications to all views
	Added possibility to switch between horizontal and vertical layout ...
or have automatic adjustment of the layout depending on screen width.

	Modifications to filter views
	Modified date-picker in filters to enable addition of timespans without
changing saved searches or messing up order of timespans

	Added several further filter criteria in InfoObject filter

	Added view with basic and still rather restricted editing capabilities for
InfoObjects – currently only used for editing user preferences or
edits by the superuser

	Added view to edit user configuration

	Added view to edit saved searches

	Added per-column ordering to list views

	Added new filter/search that shows unique Facts rather than all
InfoObjects containing a certain fact.

	New/added capabilities for writing views

	Added framework for ordering list views

	Added per-user configuration for:
	layout (horizontal vs. vertical)

	number of rows to show in list views

	number of rows to show in widget displaying objects in which a
displayed object is embedded

	Bug fixes / Improvements

	Generation of filter views became unbearably slow when many
(> 40,000) InfoObjects are in the system. This was, because
of a badly built query within the dynamically built filter
form. This has been fixed.

	Further development of JSON export (still needs work to make
the to_dict function of InfoObjects generic and configurable such as
the from_dict function)

	Fixed bug in generation of InfoObjects: when a placeholder for a given
ID already existed, it was not reliably found.

	New/Modified command-line commands

	Import command now fails gracefully if import of a file
throws an exception: it continues with import of the next file.

	Added command line arguments to basic import command:

	ability to add IDs of marking objects to be added to imported objects

	ability to automatically move imported XML files to other folder after
import

	Added command to reset user-settings and saved searches for a given user.

	Added command to re-calculate object names.

This is useful to run right after an import, recalculating the
names of ‘Observable’ InfoObjects created in the past few minutes. Thus, the
problem that those Observables that are to be named after the (single)
object they contain do not carry a proper name (because at creation time
of the Observable, the Object usually does not exist, yet) can be fixed.

0.1.0 (2013-12-19)

	Bugfixes; added documentation

0.0.9 (2013-12-16)

	First release on PyPI.

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

Developers’ Guide to DINGOS

Contents:

	Before starting to develop
	Read up on techniques and styles used in DINGOS

	Make sure that DINGOS is the right place to modify / add to

	DINGOS Model Overview

	DINGOS Application Layout
	Overview of the directory layout

	core: internal DINGOS libraries

	management/commands

	templates\dingos\grappelli

	templatetags\dingos_tags.py

	admin.py

	filter.py

	import_handling.py

	importer.py

	models.py

	__init__.py

	read_settings.py

	urls.py

	view_classes.py

	views.py

	Writing views and templates for Dingos
	Relevant folders and files

	Supporting Documentation

	Dingos-specific features

	Tips and tricks

	Dingos User Configuration Facilities
	Defining user configurations

	Accessing user configurations in templates

	Accessing user configuration in views

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

 	Developers’ Guide to DINGOS

Before starting to develop

Read up on techniques and styles used in DINGOS

Django DINGOS profitted a lot from the advice provided in Two Scoops of Django [https://django.2scoops.org/].

Unless you are an absolute Django expert (and maybe even then), please
read Daniel Greenfield’s and Audrey Roy’s excellent Two Scoops of Django [https://django.2scoops.org/].
Even though it provides best practices for Django 1.5, most of its
advice is also valid for Django 1.6, and likely to be very relevant
for quite a few minor revisions to come.

Make sure that DINGOS is the right place to modify / add to

Although DINGOS is likely to be used mainly in the context of the
Django MANTIS Cyber Threat Intelligence Management application,
DINGOS shold stay a /generic/ application for managing
structured information. So whenever you find yourself
adding/modifying stuff in DINGOS that is specific to
cyber threat intelligence management, the STIX, CybOX standards,
etc., DINGOS is the wrong place to modify/add to. The same goes
for customizations that are particular to your instance
of running MANTIS.

Please consider the following places for development instead:

	If you want to add Python code that is particular to cyber threat
management, consider adding this in django-mantis-core [https://github.com/siemens/django-mantis-core]

	If you want to add Python code that is particular to a certain
standard, consider adding it to the respective importer module,
e.g., django-mantis-stix-importer [https://github.com/siemens/django-mantis-stix-importer] or similar

	If you want to make modifications to a DINGOS template that
is required for your local instance of MANTIS (or whatever
framework is using DINGOS), the right way is probably
to override one of the DINGOS base templates. Have a look
at how django-mantis [https://github.com/siemens/django-mantis] overrides the
templates/dingos/grappelli/base.html template;
see also the Django documentation on overriding templates [https://docs.djangoproject.com/en/1.6/intro/tutorial02/#ref-customizing-your-projects-templates].

	If you want to change the url paths of DINGOS views,
do this in the url.py of your instance rather
than dingos/url.py.

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

 	Developers’ Guide to DINGOS

DINGOS Model Overview

[image: _images/dingos_model_overview.png]
DINGOS Model Overview

Overview of DINGOS models and their relationships.

Please refer to the DINGOS Developers' Overview of the DINGOS models.
The source code file models.py [https://github.com/siemens/django-dingos/blob/master/dingos/models.py] is extensively documented. Very readable and browsable documentation
is generated by Django under the admin url /admin/docs/models – be sure to include
django.contrib.admindocs in your list of installed applications and the following in your url.py file:

urlpatterns = patterns('',
 ...
 # Admin documentation:
 url(r'^admin/doc/', include('django.contrib.admindocs.urls')),
 ...
)

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

 	Developers’ Guide to DINGOS

DINGOS Application Layout

Contents

	DINGOS Application Layout
	Overview of the directory layout

	core: internal DINGOS libraries

	management/commands

	templates\dingos\grappelli

	templatetags\dingos_tags.py

	admin.py

	filter.py

	import_handling.py

	importer.py

	models.py

	__init__.py

	read_settings.py

	urls.py

	view_classes.py

	views.py

Overview of the directory layout

The layout of the DINGOS Django application is as follows:

.
├── dingos
│ ├── core
│ │ ├── datastructures.py
│ │ └── ...
│ ├── management
│ │ └── commands
│ │ └── dingos_generic_xml_import.py
│ │
│ ├── migrations
│ │ ├── 0001_initial.py
│ │ └── ...
│ ├── templates
│ │ └── dingos
│ │ └── grappelli
│ │ ├── base.html
│ │ ├── details
│ │ │ └── ...
│ │ ├── includes
│ │ │ └── ...
│ │ ├── lists
│ │ │ └── ...
│ │ └── searches
│ │ └── ...
│ ├── templatetags
│ │ └── dingos_tags.py
│ ├── admin.py
│ ├── filter.py
│ ├── import_handling.py
│ ├── importer.py
│ ├── models.py
│ ├── __init__.py
│ ├── read_settings.py
│ ├── urls.py
│ ├── view_classes.py
│ └── views.py

core: internal DINGOS libraries

Internal libraries with helper functions are placed in the core
folder. The most important library probably is core/datastructures.py,
which contains DingosObjDict, the dictionary structure into which
imported data is written. DingosObjDict preserves the order in
which keys have been added and knows how to /flatten/ itself into
a list of facts.

management/commands

This folder contains code for the command-line scripts that
can be executed via Django’s django-admin or manage.py
interface. Refer to Django documentation on custom django-admin commands [https://docs.djangoproject.com/en/dev/howto/custom-management-commands/]
for a description of how commands can be added.

templates\dingos\grappelli

DINGOS uses Django templates (see Django documentation on the template language [https://docs.djangoproject.com/en/dev/topics/templates/])
for rendering HTML pages. These are located in the template\dingos\grappelli folder.
The reason for this nesting is the following:

	by having dingos in the file path, also other apps are able to refer to templates
defined in DINGOS

	by having grappelli in the file path, we are open to supporting different CSS frameworks
at a later point of time: for supporting, e.g., bootstrap, a folder templates\bootstrap
would have to be added and would then contain the bootstrap-based templates.

In order to learn how to use the Django Grappelli [https://django-grappelli.readthedocs.org/en/latest/] CSS, make sure to include
(r'^grappelli/', include('grappelli.urls')) in your url patterns in url.py.
You can then view the Grappelli CSS documentation under <your Django server url>/grappelli/grp-doc/.

templatetags\dingos_tags.py

When you are viewing a template and find something like {% show_InfoObjectIDData object %} that
seems to do something magical (in this case, rendering a box containg identifier data of an object),
then you are looking at a Django /template tag/. Those are defined in templatetags\dingos_tags.py;
the template snippets used by the tags are defined in ``templatesdingosgrappelliincludes`.

admin.py

Configuration for the Django admin interface: via the admin interface, you can access the
DINGOS models. That is useful for viewing certain data (e.g., which namespaces do I have
in my system?) and configuring data (e.g., managing naming schemas via the InfoObjectType
objects). Refer to the Django documentation on the admin site [https://docs.djangoproject.com/en/dev/ref/contrib/admin/] for details about
the contents of admin.py – you may also want to have a look at
the documentation of Django Grappelli [https://django-grappelli.readthedocs.org/en/latest/], since admin.py uses some extensions
provided by Grappelli.

filter.py

DINGOS uses the django-filter [https://django-filter.readthedocs.org/en/latest/] app to generate filters for list views. The
configuration for the filters is located in filter.py: for background on
how to configure filters, please refer to the django-filter documentation [https://django-filter.readthedocs.org/en/latest/].

import_handling.py

Next to models.py (see below), this is the heart of DINGOS: it defines the
class DingoImportHandling that contains the xml_import function,
a highly configurable function for turning XML into DINGOS dictionary objects,
and create_iobject, the function used to write a DINGOS dictionary object
to a InfoObject in the database.

importer.py

The most important content of this file is the generic class DingoImportCommand
which provides the basis for easy implementation of import scripts to
be carried out via the command-line (see above under management/commands
and Django documentation on custom django-admin commands [https://docs.djangoproject.com/en/dev/howto/custom-management-commands/].

This file also contains a very simple generic XML importer, which is mostly for
demonstration purposes.

models.py

The heart of DINGOS. The code is extensively documented; please refer to the
DINGOS Developers' Overview of the DINGOS models
for an overview.

__init__.py

DINGOS uses the __init__.py file to define a number of defaults used
within the DINGOS code.

read_settings.py

Code for reading DINGOS-specific settings configured in the Django settings
file(s). Some of the defaults defined in __init__.py can be
overwritten here.

urls.py

The Django URL configuration. See the Django documentation on the URL dispatcher [https://docs.djangoproject.com/en/dev/topics/http/urls/].

view_classes.py

DINGOS makes extensive use of Django’s class-based views (see the
Django documentation on class-based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/]). In view_classes.py,
we define mixins (see also the Django documentation on using mixins in class-based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/mixins/])
and base classes that are used for defining views
in DINGOS.

views.py

The DINGOS views. Refert to the
Django documentation on class-based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/].

When writing and testing views, do not even start without the excellent Django Debug Toolbar [https://github.com/django-debug-toolbar/django-debug-toolbar]:
it shows you, for example, how many which SQL queries were executed (which will help you
to find the right configuration for the prefetch_related [https://docs.djangoproject.com/en/dev/ref/models/querysets/#prefetch-related] and select_related [https://docs.djangoproject.com/en/dev/ref/models/querysets/#select-related]

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dingos 0.2.1 documentation

 	Developers’ Guide to DINGOS

Writing views and templates for Dingos

Contents

	Writing views and templates for Dingos
	Relevant folders and files
	Templates

	Views

	Supporting Documentation

	Dingos-specific features
	User configurations

	Tips and tricks

Relevant folders and files

Templates

DINGOS uses Django templates (see Django documentation on the template language [https://docs.djangoproject.com/en/dev/topics/templates/])
for rendering HTML pages. These are located in the template\dingos\grappelli folder.
The reason for this nesting is the following:

	by having dingos in the file path, also other apps are able to refer to templates
defined in DINGOS

	by having grappelli in the file path, we are open to supporting different CSS frameworks
at a later point of time: for supporting, e.g., bootstrap, a folder templates\bootstrap
would have to be added and would then contain the bootstrap-based templates.

In order to learn how to use the Django Grappelli [https://django-grappelli.readthedocs.org/en/latest/] CSS, make sure to include
(r'^grappelli/', include('grappelli.urls')) in your url patterns in url.py.
You can then view the Grappelli CSS documentation under <your Django server url>/grappelli/grp-doc/.

Views

DINGOS makes extensive use of Django’s class-based views. In view_classes.py,
we define mixins and base classes that are used for defining views
in DINGOS; the views themselves are defined in views.py.

Supporting Documentation

	For basics on templates, refer to the Django documentation on the template language [https://docs.djangoproject.com/en/dev/topics/templates/].

	In order to learn how to use the Django Grappelli [https://django-grappelli.readthedocs.org/en/latest/] CSS, make sure to include
(r'^grappelli/', include('grappelli.urls')) in your url patterns in url.py.
You can then view the Grappelli CSS documentation under <your Django server url>/grappelli/grp-doc/.

	For information on class-based views see:
- Django documentation on class-based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/]
- Django documentation on using mixins in class-based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/mixins/]

Dingos-specific features

User configurations

Since Dingos 0.2.0, Dingos offers resources for structured management of user-specific
data such as user-configurations. Please refer to Dingos User Configuration Facilities for
more information.

Tips and tricks

When writing and testing views, do not even start without the excellent Django Debug Toolbar [https://github.com/django-debug-toolbar/django-debug-toolbar]:
it shows you, for example, how many which SQL queries were executed (which will help you
to find the right configuration for the prefetch_related [https://docs.djangoproject.com/en/dev/ref/models/querysets/#prefetch-related] and select_related [https://docs.djangoproject.com/en/dev/ref/models/querysets/#select-related]

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Dingos 0.2.1 documentation

 	Developers’ Guide to DINGOS

Dingos User Configuration Facilities

Defining user configurations

The default user configuration is defined in the constant DINGOS_DEFAULT_USER_PREFS.
dingos/__init__.py but can be overwritten in the settings, e.g. as follows:

DINGOS = {
 (...)
 'DINGOS_DEFAULT_USER_PREFS' : {
 'dingos' : { 'widgets' :
 {'embedded_in_objects' :
 {'lines' : {'@description': """Max. number of objects displayed in
 widget listing the objects in which the
 current object is embedded.""",
 '_value' : '5'}
 } ,
 },
 'view' :
 {'pagination':
 {'lines' : {'@description': """Max. number of lines displayed in
 paginated views.""",
 '_value' : '20'},
 },
 'orientation' : {'@description': """Layout orientation. Possible values are 'vertical', 'horizontal', and 'auto'.""",
 '_value' : 'horizontal'}
 }

 }
 }

 (...)
}

When a user logs in for the first time, the standard user configuration is copied over to his personal
user configuration. The user configuration can be viewed with the view named url.dingos.admin.view.userprefs –
the standard URL for this view is ../Admin/ViewUserPrefs.

A logged in user can edit the settings under the ViewUserPrefs.
Alternatively, for testing purposes, you can change the preferences
via the command line interface:

python manage.py dingos_manage_user_settings --reset preferences <user_name1> <user_name2> --settings=...

After doing this, go to the above-mentioned view of the user preferences for a user to also refresh the user data that has
been cached in the session.

Accessing user configurations in templates

In templates, user configurations are accessed as follows:

customization.<default_value>.<path>.<to>.<value>.<in>.<config>.<dictionary>

For example to access the orientation of the display defined as horizontal
above, you would write:

customization.horizontal.dingos.view.orientation

Or, to access the number of lines to be shown on a list display (with a default value of 15),
you would write:

customization.15.dingos.view.pagination.lines

Accessing user configuration in views

The Dingos standard views all include the mixin ViewMethodsMixin,
which defines the function lookup_customization. In order to look
up the number of lines to be shown on a list display (with a
default value of 15), you would write:

self.lookup_customization('dingos','view','pagination','lines',default=15)

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Dingos 0.2.1 documentation

Index

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 _static/down.png

_images/dingos_example_view.png
Info Object: person (11 facts)

Identifying data

Identifier own.organization.com:dda554ce576494910284761432433a0244159b 5614dbBal36b481957119e220 Timestamp 2013-11-19T10:1210.994359+0100

Type genericperson (generic) InfoObject Family generic
e

Value Datatype

frsiName Jon Sting

lasiName Smith Sting

age 2 Sting

address stieetAddress 212nd Street String

address city New York Sting

address stale Ny Sting

address postalCode 10021 Sting

phoneNumbers phoneNumber 2125551234 Sting

horenters phonelunter @bpehane Sirg

phoneNumbers phoneNumber 6465554567 Stiing

orenters phorelunter | @hpe Siig

_images/dingos_model_overview.png
=z

<iaiec e
prrp——

oot ypeset
"w
ooy

prvmp—

Django DINGOS Models
v0.1.0 20131204
[[Jsstoring Information
lanaging Identifiers
[JManaging Meta Data
[[IMarking Information
[IRelating Objects
©2013 Siemens

i e St
\ e ae

N

1

1
s HE)
[N H [
b H H ¥

[H b

[: |

H

T

|

1

1

1

1

1

! 1

orga vaues mayba |

e

I |

1

1

1

1

1

1

1

1

1

1

1

1

1

i

_static/comment.png

readme.html

 Navigation

 		
 index

 		Dingos 0.2.1 documentation »

Dingos

A Django app that provides a generic framework for managing structured information in a generic way.

Documentation

The full documentation is at http://django-dingos.readthedocs.org.

Quickstart

Please refer to the quickstart information of MANTIS, available at http://django-mantis.readthedocs.org.

Acknowledgments

The basic layout for this Django app with out-of-the-box configuration of setup.py for
easy build, submission to PyPi, etc., and Sphinx documentation tree was generated with Audrey Roy’s excellent Cookiecutter [https://github.com/audreyr/cookiecutter]
and Daniel Greenfield’s cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage] template.

 © Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		Dingos 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/minus.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

