
D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

How Facts are stored

 DINGOS stores facts as combination of FactTerm and associated FactValues

 Example: consider the following XML:

This yields the following FactTerms and FactValues:

<person>

 <firstName>John</firstName>

 <lastName>Smith</lastName>

 <age>25</age>

 <address>

 <streetAddress>21 2nd Street</streetAddress>

 <city>New York</city>

 <state>NY</state>

 <postalCode>10021</postalCode>

 </address>

 <phoneNumbers>

 <phoneNumber type="home">212 555-1234</phoneNumber>

 <phoneNumber type="fax">646 555-4567</phoneNumber>

 </phoneNumbers>

</person>

Fact Term Fact Value

person/firstName John

person/lastName Smith

person/age 25

person/address/streetAddress 21 2nd Street

person/address/city New York

person/address/state NY

person/address/postalCode 10021

person/phoneNumbers/phoneNumber@type home

person/phoneNumbers/phoneNumber 212 555-1234

person/phoneNumbers/phoneNumber@type fax

person/phoneNumbers/phoneNumber 646 555-4567

D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

InfoObjects and Node Identifiers

 Facts are stored in InfoObjects
 They are, however, not directly linked to an InfoObject, but

via a Django „through“-model, the InfoObject2Fact:
 Thus, we can save memory space via sharing: if the same

fact occurs in several InfoObjects, we only store the fact
once

 We need a way to provide positional information: otherwise
we loose structural information.

 Structural information is kept in the node identifier NodeID.
For example:

 the the fact with FactTerm person/firstName
carries the node identifier „N0000:N0000“
 ‚person‘ is first (and only) top-level node of the XML
 ‚firstName‘ is the first child node of ‚person‘ in the XML

 The fact with FactTerm person/lastName carries
the node identifier „N0000:N0001“, because
„lastName“ is the second child node of ‚person‘

 The fact with FactTerm
person/phoneNumbers/phoneNumber@type
carries the node identifier
„N0000:N0004:L0000:A0000“, because
 ‚phoneNumbers‘ is the 5th child of ‚person‘
 ‚phoneNumber‘ is the first element in a list of ‚phoneNumber‘ elements

under ‚phoneNumbers‘
 ‚type‘ is the first attribute at this position.

Fact Term Fact Value

person/firstName John

person/lastName Smith

person/age 25

person/address/streetAddress 21 2nd Street
person/address/city New York

person/address/state NY

person/address/postalCode 10021

person/phoneNumbers/phoneNumber@type home

person/phoneNumbers/phoneNumber 212 555-1234

person/phoneNumbers/phoneNumber@type fax

person/phoneNumbers/phoneNumber 646 555-4567

D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

InfoObjects, Identifiers and Revisions

 Each InfoObject has an Identifier and (stored internally) a timestamp

 InfoObjects of a given identifier may occur in several revisions, each revision marked
with its specific timestamp

 The most recent (i.e. latest) revision of an InfoObject is marked in the data model by
a pointer ‚latest‘ from the Identifier

The structure of Identifiers

 Each Identifier has a namespace

 The intended use of the namespace is to communicate the „owner organization“ of
an object

 For the STIX/CybOX-example below, the STIX/CybOX importer has been configured
so as to extract the identifier “Object-3a7aa9db-d082-447c-a422-293b78e24238” with
namespace “http://example.com”

<stix:STIX_Package xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 (...)

 xmlns:examle="http://example.com"

 xmlns:EmailMessageObj="http://cybox.mitre.org/objects#EmailMessageObject-1"

 xmlns:cybox="http://cybox.mitre.org/cybox-2"

 (...)>

 (...)

 <cybox:Object id="example:Object-3a7aa9db-d082-447c-a422-293b78e24238">

 <cybox:Properties xsi:type="EmailMessageObj:EmailMessageObjectType">

 <EmailMessageObj:Header>

 <EmailMessageObj:From category="e-mail">

 (...)

D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

Referring from one InfoObject to another (I): Embedded objects

 A Fact can contain a reference to another InfoObject rather than FactValue

 This reference points to an Identifier rather than an InfoObject model. This is
because the Identifier groups different revisions of an information object (and each
of these revisions is stored as separate InfoObject).

 DINGOS importers can be configured to factor out embedded objects into separate
InfoObjects.

 For example, for the following STIX object, the STIX/CybOx importer has been
configured to extract a chain of embedded objects as shown below:

D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

Referring from one InfoObject to another (II): Relationships

 Relations can be used to relate InfoObjects to each other.

 As before, these references point Identifiers rather than InfoObjects: this is
because the Identifier groups different revisions of an information object (and
each of these revisions is stored as separate InfoObject).

 A ‘relation_type’ can be specified as a single Fact (the Fact contains the
relation type as fact value and a configurable default FactTerm)

 Relationship metadata can be specified in an InfoObject

D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

Marking Information

 Markings are InfoObjects that ‘mark’ existing information.

 We use Django’s content type mechanism to relate markings to different models:
currently, we can mark InfoObjects as well as facts within an InfoObject
(this through the InfoObject2Fact model)

 The intention is to implement markings as used in the STIX standard

 Not that

 Unlike relationships and embeddings, here the reference is directly to the
InfoObject rather than an Identifier, i.e., markings do not
automatically carry over between revisions

 Of all DINGOS 0.1.0 models, markings are most likely to change in future.

D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

Storing Metadata (I): Family and Type

Each InfoObject has a InfoObjectType and a
InfoObjectFamily; for type and family, a Revision is
recorded.

For example, for the STIX/CybOX snippet below, the importer has
been configured to extract the following information for a resulting
“EmailMessageObj” InfoObject:

 Family is “cybox.mitre.org” and family revision is “2”

 Type is “EmailMessageObj” and type revision is “1”; the
DataTypeNamespace associated with the
InfoObjectType is
“http://cybox.mitre.org/objects#EmailMessageObject”.

<stix:STIX_Package xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 (...)

 xmlns:examle="http://example.com"

 xmlns:EmailMessageObj="http://cybox.mitre.org/objects#EmailMessageObject-1"

 xmlns:cybox="http://cybox.mitre.org/cybox-2"

 (...)>

 (...)

 <cybox:Object id="example:Object-3a7aa9db-d082-447c-a422-293b78e24238">

 <cybox:Properties xsi:type="EmailMessageObj:EmailMessageObjectType">

 <EmailMessageObj:Header>

 <EmailMessageObj:From category="e-mail">

 <AddressObj:Address_Value

 condition="Contains">@state.gov

 </AddressObj:Address_Value>

 </EmailMessageObj:From>

 </EmailMessageObj:Header>

 </cybox:Properties>

 </cybox>

 (...)

</stix>

D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

Z

Storing Metadata (II): Datatypes

 One and the same FactTerm can appear in several
InfoObjectTypes.

 For each of these types, the a FactTerm2Type records
the possible FactDataTypes that values associated
with the particular FactTerm in an InfoObject of
given InfoObjectType may have.

 If the importer is not configured to recognize data type
information, the default datatype is “String” with a
default namespace.

 For the STIX/CybOX snippet below, the importer has been
configured to extract the following data type information
about the value associated with FactTerm
“Properties/Hashes/Hash”:

 FactDataType is “HashNameVocab-1.0”

 Namespace of datatype “HashNameVocab-1.0” is as
specified in the top-level element of the XML file for
‘cyboxVocabs’.

<cybox:Properties xsi:type="FileObj:FileObjectType" >

 (...)

 <FileObj:Hashes>

 <cyboxCommon:Hash>

 <cyboxCommon:Type xsi:type="cyboxVocabs:HashNameVocab-1.0">

 MD5

 </cyboxCommon:Type>

 <cyboxCommon:Simple_Hash_Value>

 cf2b3ad32a8a4cfb05e9dfc45875bd70

 </cyboxCommon:Simple_Hash_Value>

 </cyboxCommon:Hash>

 </FileObj:Hashes>

</cybox:Properties>

D
jan

go
 D

IN
G

O
S: D

evelo
p

ers‘ O
verview

©

 2
0

1
3

, Siem
en

s

V
0

.1
.0

 (2
0

1
3

-0
9

-1
2

)

Using Metadata: Extracting object names from facts

 An InfoObjectType can be associated with several InfoObjectNaming schemas.
 When importing an InfoObject, the naming schemas are used to derive an object name:
 The schemas are tried out in order (each InfoObjectNaming carries an ordinal).
 The first schema for which all required facts are present in the object is used to extract a name
 If no schema yields a name, then a default name (currently the name of the InfoObjectType followed by the

number of facts in the InfoObject) is used.
 For example, the STIX/CybOX importer defines the following naming schemas for a CybOX “FileObject”:

 [Properties/File_Name] ([fact_count] facts)

 [Properties/Hashes/Hash/Type]:[Properties/Hashes/Hash/Simple_Hash_Value] ([fact_count] facts)

 [fact_count_equal_1?][term_of_fact_num_0] = [value_of_fact_num_0]

 Now:
 if a file object has a fact with fact term ‘Properties/FileName’ and value “evil.exe” and contains

13 facts, then the name given to the object is “evil.exe (13 facts)”.
 if a file object specifies no file name but one or more hash values, the first hash value is used to extrat the

object name as “<hash_value> (<# of facts> facts)”.
 If neither file name nor hash value is specified, but the object contains exactly one fact, then

“<fact_term> = <fact value> (<# of facts> facts)”.
Is extracted as object name

 Note: you can specify/change naming schemas in the Django admin interface for InfoObjectType models

(the standard URI is ‘<server>/admin/dingos/factdatatype/’ .

